翻訳と辞書 ・ Conner, Montana ・ Conner4Real ・ Connerré ・ Conners Grove, Virginia ・ Connersville (Amtrak station) ・ Connersville High School ・ Connersville Township, Fayette County, Indiana ・ Connersville, Indiana ・ Connersville, Kentucky ・ Connerton ・ Connerton, Florida ・ Connerton, Pennsylvania ・ Connerville, Oklahoma ・ Connery ・ Connes ・ Connes embedding problem ・ Connesena Creek ・ Conness ・ Conness Glacier ・ Conness Lakes ・ Connestee Falls and Batson Creek Falls ・ Connetable (Gatchina) ・ Connetquot High School ・ Connetquot River ・ Connetquot River State Park Preserve ・ Connetquot School District ・ Connetta ・ Connew ・ Connewarre, Victoria ・ Connex (disambiguation)
|
|
Connes embedding problem : ウィキペディア英語版 | Connes embedding problem
In von Neumann algebras, the Connes embedding problem or conjecture, due to Alain Connes, asks whether every type II1 factor on a separable Hilbert space can be embedded into the ultrapower of the hyperfinite type II1 factor by a free ultrafilter. The problem admits a number of equivalent formulations. ==Statement== Let be a free ultrafilter on the natural numbers and let ''R'' be the hyperfinite type II1 factor with trace . One can construct the ultrapower as follows: let be the von Neumann algebra of norm-bounded sequences and let . The quotient turns out to be a II1 factor with trace , where is any representative sequence of . Connes' Embedding Conjecture asks whether every type II1 factor on a separable Hilbert space can be embedded into some . The isomorphism class of is independent of the ultrafilter if and only if the continuum hypothesis is true (Ge-Hadwin and Farah-Hart-Sherman), but such an embedding property does not depend on the ultrafilter because von Neumann algebras acting on separable Hilbert spaces are, roughly speaking, very small.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Connes embedding problem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|